Modification of myo-inositol monophosphatase by the arginine-specific reagent phenylglyoxal.

نویسندگان

  • R G Jackson
  • N S Gee
  • C I Ragan
چکیده

myo-Inositol monophosphatase is inhibited by the arginine-specific reagent phenylglyoxal. The rate of inactivation is decreased in the presence of Pi, a competitive inhibitor of the enzyme. The effect of Pi is dependent on the presence of Mg2+, but is unaffected by Li+, an uncompetitive inhibitor. In the absence of Mg2+, the substrate, Ins(1)P, binds to the enzyme but is not converted into products, and affords only a small degree of protection against inactivation by phenylglyoxal. Li+ had no further effect under these conditions, but in the presence of Mg2+ caused a marked potentiation of the protective effect of substrate alone. In the absence of substrate, Li+ had no effect on activation by phenylglyoxal. Incorporation of 14C-labelled phenylglyoxal showed that inactivation was associated with modification of a single arginine residue per monomer in the dimeric enzyme. These findings support a mechanism in which Li+ inhibits monophosphatase by trapping a phosphorylated enzyme intermediate and preventing its hydrolysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of histidine modification on the activity of myo-inositol monophosphatase from bovine brain.

The pH dependence of myo-inositol monophosphatase may indicate a role for histidine residues in the catalytic mechanism (Ganzhorn, A. J., and Chanal, M.-C. (1990) Biochemistry 29, 6065-6071). This possibility was investigated by chemical modification. At pH 6.0 and 25 degrees C, the enzyme was inactivated by diethylpyrocarbonate in a pseudo-first order reaction with a bimolecular rate constant ...

متن کامل

Chemical modification of arginine residues of rat liver S-adenosylhomocysteinase.

Rat liver S-adenosylhomocysteinase (EC 3.3.1.1) is inactivated by phenylglyoxal following pseudo-first order kinetics. The dependence of the apparent first order rate constant for inactivation on the phenylglyoxal concentration shows that the inactivation is second order in reagent. This fact together with the reversibility of inactivation upon removal of excess reagent and the lack of reaction...

متن کامل

7376 Essential Arginine Residue of S - Adenosylhomocysteinase TABLE

Rat liver S-adenosylhomocysteinase (EC 3.3.1.1) is inactivated by phenylglyoxal following pseudo-first order kinetics. The dependence of the apparent first order rate constant for inactivation on the phenylglyoxal concentration shows that the inactivation is second order in reagent. This fact together with the reversibility of inactivation upon removal of excess reagent and the lack of reaction...

متن کامل

Irreversible inactivation of red cell chloride exchange with phenylglyoxal, and arginine-specific reagent

Chloride exchange in resealed human erythrocyte ghosts can be irreversibly inhibited with phenylglyoxal, a reagent specific for the modification of arginyl residues in proteins. Phenylglyoxal inhibits anion transport in two distinct ways. At 0 degrees C, inhibition is instantaneous and fully reversible, whereas at higher temperature in an alkaline extracellular medium, covalent binding of pheny...

متن کامل

Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver.

Rat liver ATP citrate lyase was inactivated by 2, 3-butanedione and phenylglyoxal. Phenylglyoxal caused the most rapid and complete inactivation of enzyme activity in 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid buffer, pH 8. Inactivation by both butanedione and phenylglyoxal was concentration-dependent and followed pseudo- first-order kinetics. Phenylglyoxal also decreased autophosphor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 264 2  شماره 

صفحات  -

تاریخ انتشار 1989